Data Wrangling Comprehensive Study by Type (Tools (Tabula, CSVKit, and Others), Services (Managed Services and Professional Services (Consulting Services and Support and Maintenance Services))), Application (BFSI, Telecom and IT, Retail and eCommerce, Healthcare and Life Sciences, Travel and Hospitality, Government, Manufacturing, Energy and Utilities, Transportation and Logistics, Others), Function Type (Marketing and Sales, Finance, Operations, HR, Legal, Others), Organisation Size (Large enterprises, Small and Medium-sized Enterprises (SMEs)), Deployment Model (On-premises, Cloud) Players and Region - Global Market Outlook to 2028

Data Wrangling Market by XX Submarkets | Forecast Years 2023-2028  

  • Summary
  • Market Segments
  • Table of Content
  • List of Table & Figures
  • Players Profiled
Global Data Wrangling Market Overview:
Data wrangling is a technique or a process of mapping and transforming data which is taken from the raw data sources and then transformed into another format, with the intent of making it more appropriate and valuable for a variety of downstream purposes such as analytics. With gaining widespread adoption for analytics, data wrangling tools are expected to be adopted across multiple verticals. These tools would be able to filter out unwanted data and standardized the data that would be efficiently used by end-user.

AttributesDetails
Study Period2018-2028
Base Year2022
Forecast Period2023-2028
Historical Period2018-2022
UnitValue (USD Million)
Customization ScopeAvail customization with purchase of this report. Add or modify country, region & or narrow down segments in the final scope subject to feasibility


Influencing Trend:
Adoption of AI and Ml Technologies

Market Growth Drivers:
Increasing Volume and Velocity of Data and The Increasing Smart Cities Across the World and Rapid Adoption of IoT Devices

Challenges:
Lack of Awareness of Data Wrangling Tools among SMEs and Concerns Regarding Data Quality

Restraints:
Lack of Awareness of Data Wrangling Tools and Reluctance to Shift From Traditional ETL Tools to Advanced Automated Tools

Opportunities:
Increasing Regulatory Pressure and Growth of Edge Computing

Competitive Landscape:
The global market is highly competitive and consists of a limited number of providers who compete with each other. The intense competition, changing consumer spending patterns, demographic trends, and frequent changes in consumer preferences pose significant opportunities for market growth.
Some of the key players profiled in the report are Trifacta (United States), Datawatch (United States), Dataiku (France), IBM (United States), SAS Institute (United States), Oracle (United States), Talend (United States), Alteryx (United States), TIBCO (United States), Paxata (United States) and Impetus (United States). Additionally, following companies can also be profiled that are part of our coverage like Informatica (United States), Hitachi Vantara (United States) and Teradata (United States). Analyst at AMA Research see United states Manufacturers to retain maximum share of Global Data Wrangling market by 2028. Considering Market by Function Type, the sub-segment i.e. Marketing and Sales will boost the Data Wrangling market. Considering Market by Organisation Size, the sub-segment i.e. Large enterprises will boost the Data Wrangling market. Considering Market by Deployment Model, the sub-segment i.e. On-premises will boost the Data Wrangling market.

Latest Market Insights:
On September 28, 2023, Talend, a cloud-based data integration platform provider, announced its acquisition of Datastream, a provider of real-time data replication software. The acquisition is expected to help Talend expand its capabilities in real-time data integration.

On October 4, 2023, DataRobot, a leading provider of AI data preparation software, announced its acquisition of DataVisor, a provider of data quality software. The acquisition is expected to help DataRobot expand its product portfolio and provide a more comprehensive solution for data preparation and quality.

In the United States, there is no as such regulation for Big Data especially but the companies seeking to participate in Big Data operations must ensure that their proposed activities comply with privacy laws that are applicable to the data involved in their operations, as well as the companies' own privacy policies and all applicable contractual requirements. For example, companies will need to comply with all other applicable privacy and data security laws, including laws regarding privacy policy disclosures, such as the California Online Privacy Protection Act, laws concerning data breaches and regulations mandating data security requirements, such as the Massachusetts Data Security regulations.

What Can be Explored with the Data Wrangling Market Study
 Gain Market Understanding
 Identify Growth Opportunities
 Analyze and Measure the Global Data Wrangling Market by Identifying Investment across various Industry Verticals
 Understand the Trends that will drive Future Changes in Data Wrangling
 Understand the Competitive Scenario
- Track Right Markets
- Identify the Right Verticals

Research Methodology:
The top-down and bottom-up approaches are used to estimate and validate the size of the Global Data Wrangling market.
In order to reach an exhaustive list of functional and relevant players various industry classification standards are closely followed such as NAICS, ICB, SIC to penetrate deep in important geographies by players and a thorough validation test is conducted to reach most relevant players for survey in Data Wrangling market.
In order to make priority list sorting is done based on revenue generated based on latest reporting with the help of paid databases such as Factiva, Bloomberg etc.
Finally the questionnaire is set and specifically designed to address all the necessities for primary data collection after getting prior appointment by targeting key target audience that includes Investors and venture capitalists, Value-Added Re-sellers (VARs), Professional service providers, Software and application developers, Government agencies, Small and Medium-sized Enterprises (SMEs) and large enterprises, Third-party providers, Consultants/consultancies/advisory firms and Others.
This helps us to gather the data related to players revenue, operating cycle and expense, profit along with product or service growth etc.
Almost 70-80% of data is collected through primary medium and further validation is done through various secondary sources that includes Regulators, World Bank, Association, Company Website, SEC filings, OTC BB, USPTO, EPO, Annual reports, press releases etc.

Report Objectives / Segmentation Covered

By Type
  • Tools (Tabula, CSVKit, and Others)
  • Services [Managed Services and Professional Services (Consulting Services and Support and Maintenance Services)]
By Application
  • BFSI
  • Telecom and IT
  • Retail and eCommerce
  • Healthcare and Life Sciences
  • Travel and Hospitality
  • Government
  • Manufacturing
  • Energy and Utilities
  • Transportation and Logistics
  • Others
By Function Type
  • Marketing and Sales
  • Finance
  • Operations
  • HR
  • Legal
  • Others

By Organisation Size
  • Large enterprises
  • Small and Medium-sized Enterprises (SMEs)

By Deployment Model
  • On-premises
  • Cloud

By Regions
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia Pacific
    • China
    • Japan
    • India
    • South Korea
    • Taiwan
    • Australia
    • Rest of Asia-Pacific
  • Europe
    • Germany
    • France
    • Italy
    • United Kingdom
    • Netherlands
    • Rest of Europe
  • MEA
    • Middle East
    • Africa
  • North America
    • United States
    • Canada
    • Mexico
  • 1. Market Overview
    • 1.1. Introduction
    • 1.2. Scope/Objective of the Study
      • 1.2.1. Research Objective
  • 2. Executive Summary
    • 2.1. Introduction
  • 3. Market Dynamics
    • 3.1. Introduction
    • 3.2. Market Drivers
      • 3.2.1. Increasing Volume and Velocity of Data
      • 3.2.2. The Increasing Smart Cities Across the World and Rapid Adoption of IoT Devices
    • 3.3. Market Challenges
      • 3.3.1. Lack of Awareness of Data Wrangling Tools among SMEs
      • 3.3.2. Concerns Regarding Data Quality
    • 3.4. Market Trends
      • 3.4.1. Adoption of AI and Ml Technologies
  • 4. Market Factor Analysis
    • 4.1. Porters Five Forces
    • 4.2. Supply/Value Chain
    • 4.3. PESTEL analysis
    • 4.4. Market Entropy
    • 4.5. Patent/Trademark Analysis
  • 5. Global Data Wrangling, by Type, Application, Function Type, Organisation Size, Deployment Model and Region (value, volume and price ) (2017-2022)
    • 5.1. Introduction
    • 5.2. Global Data Wrangling (Value)
      • 5.2.1. Global Data Wrangling by: Type (Value)
        • 5.2.1.1. Tools (Tabula, CSVKit, and Others)
        • 5.2.1.2. Services [Managed Services and Professional Services (Consulting Services and Support and Maintenance Services)]
      • 5.2.2. Global Data Wrangling by: Application (Value)
        • 5.2.2.1. BFSI
        • 5.2.2.2. Telecom and IT
        • 5.2.2.3. Retail and eCommerce
        • 5.2.2.4. Healthcare and Life Sciences
        • 5.2.2.5. Travel and Hospitality
        • 5.2.2.6. Government
        • 5.2.2.7. Manufacturing
        • 5.2.2.8. Energy and Utilities
        • 5.2.2.9. Transportation and Logistics
        • 5.2.2.10. Others
      • 5.2.3. Global Data Wrangling by: Function Type (Value)
        • 5.2.3.1. Marketing and Sales
        • 5.2.3.2. Finance
        • 5.2.3.3. Operations
        • 5.2.3.4. HR
        • 5.2.3.5. Legal
        • 5.2.3.6. Others
      • 5.2.4. Global Data Wrangling by: Organisation Size (Value)
        • 5.2.4.1. Large enterprises
        • 5.2.4.2. Small and Medium-sized Enterprises (SMEs)
      • 5.2.5. Global Data Wrangling by: Deployment Model (Value)
        • 5.2.5.1. On-premises
        • 5.2.5.2. Cloud
      • 5.2.6. Global Data Wrangling Region
        • 5.2.6.1. South America
          • 5.2.6.1.1. Brazil
          • 5.2.6.1.2. Argentina
          • 5.2.6.1.3. Rest of South America
        • 5.2.6.2. Asia Pacific
          • 5.2.6.2.1. China
          • 5.2.6.2.2. Japan
          • 5.2.6.2.3. India
          • 5.2.6.2.4. South Korea
          • 5.2.6.2.5. Taiwan
          • 5.2.6.2.6. Australia
          • 5.2.6.2.7. Rest of Asia-Pacific
        • 5.2.6.3. Europe
          • 5.2.6.3.1. Germany
          • 5.2.6.3.2. France
          • 5.2.6.3.3. Italy
          • 5.2.6.3.4. United Kingdom
          • 5.2.6.3.5. Netherlands
          • 5.2.6.3.6. Rest of Europe
        • 5.2.6.4. MEA
          • 5.2.6.4.1. Middle East
          • 5.2.6.4.2. Africa
        • 5.2.6.5. North America
          • 5.2.6.5.1. United States
          • 5.2.6.5.2. Canada
          • 5.2.6.5.3. Mexico
    • 5.3. Global Data Wrangling (Volume)
      • 5.3.1. Global Data Wrangling by: Type (Volume)
        • 5.3.1.1. Tools (Tabula, CSVKit, and Others)
        • 5.3.1.2. Services [Managed Services and Professional Services (Consulting Services and Support and Maintenance Services)]
      • 5.3.2. Global Data Wrangling by: Application (Volume)
        • 5.3.2.1. BFSI
        • 5.3.2.2. Telecom and IT
        • 5.3.2.3. Retail and eCommerce
        • 5.3.2.4. Healthcare and Life Sciences
        • 5.3.2.5. Travel and Hospitality
        • 5.3.2.6. Government
        • 5.3.2.7. Manufacturing
        • 5.3.2.8. Energy and Utilities
        • 5.3.2.9. Transportation and Logistics
        • 5.3.2.10. Others
      • 5.3.3. Global Data Wrangling by: Function Type (Volume)
        • 5.3.3.1. Marketing and Sales
        • 5.3.3.2. Finance
        • 5.3.3.3. Operations
        • 5.3.3.4. HR
        • 5.3.3.5. Legal
        • 5.3.3.6. Others
      • 5.3.4. Global Data Wrangling by: Organisation Size (Volume)
        • 5.3.4.1. Large enterprises
        • 5.3.4.2. Small and Medium-sized Enterprises (SMEs)
      • 5.3.5. Global Data Wrangling by: Deployment Model (Volume)
        • 5.3.5.1. On-premises
        • 5.3.5.2. Cloud
      • 5.3.6. Global Data Wrangling Region
        • 5.3.6.1. South America
          • 5.3.6.1.1. Brazil
          • 5.3.6.1.2. Argentina
          • 5.3.6.1.3. Rest of South America
        • 5.3.6.2. Asia Pacific
          • 5.3.6.2.1. China
          • 5.3.6.2.2. Japan
          • 5.3.6.2.3. India
          • 5.3.6.2.4. South Korea
          • 5.3.6.2.5. Taiwan
          • 5.3.6.2.6. Australia
          • 5.3.6.2.7. Rest of Asia-Pacific
        • 5.3.6.3. Europe
          • 5.3.6.3.1. Germany
          • 5.3.6.3.2. France
          • 5.3.6.3.3. Italy
          • 5.3.6.3.4. United Kingdom
          • 5.3.6.3.5. Netherlands
          • 5.3.6.3.6. Rest of Europe
        • 5.3.6.4. MEA
          • 5.3.6.4.1. Middle East
          • 5.3.6.4.2. Africa
        • 5.3.6.5. North America
          • 5.3.6.5.1. United States
          • 5.3.6.5.2. Canada
          • 5.3.6.5.3. Mexico
    • 5.4. Global Data Wrangling (Price)
      • 5.4.1. Global Data Wrangling by: Type (Price)
  • 6. Data Wrangling: Manufacturers/Players Analysis
    • 6.1. Competitive Landscape
      • 6.1.1. Market Share Analysis
        • 6.1.1.1. Top 3
        • 6.1.1.2. Top 5
    • 6.2. Peer Group Analysis (2022)
    • 6.3. BCG Matrix
    • 6.4. Company Profile
      • 6.4.1. Trifacta (United States)
        • 6.4.1.1. Business Overview
        • 6.4.1.2. Products/Services Offerings
        • 6.4.1.3. Financial Analysis
        • 6.4.1.4. SWOT Analysis
      • 6.4.2. Datawatch (United States)
        • 6.4.2.1. Business Overview
        • 6.4.2.2. Products/Services Offerings
        • 6.4.2.3. Financial Analysis
        • 6.4.2.4. SWOT Analysis
      • 6.4.3. Dataiku (France)
        • 6.4.3.1. Business Overview
        • 6.4.3.2. Products/Services Offerings
        • 6.4.3.3. Financial Analysis
        • 6.4.3.4. SWOT Analysis
      • 6.4.4. IBM (United States)
        • 6.4.4.1. Business Overview
        • 6.4.4.2. Products/Services Offerings
        • 6.4.4.3. Financial Analysis
        • 6.4.4.4. SWOT Analysis
      • 6.4.5. SAS Institute (United States)
        • 6.4.5.1. Business Overview
        • 6.4.5.2. Products/Services Offerings
        • 6.4.5.3. Financial Analysis
        • 6.4.5.4. SWOT Analysis
      • 6.4.6. Oracle (United States)
        • 6.4.6.1. Business Overview
        • 6.4.6.2. Products/Services Offerings
        • 6.4.6.3. Financial Analysis
        • 6.4.6.4. SWOT Analysis
      • 6.4.7. Talend (United States)
        • 6.4.7.1. Business Overview
        • 6.4.7.2. Products/Services Offerings
        • 6.4.7.3. Financial Analysis
        • 6.4.7.4. SWOT Analysis
      • 6.4.8. Alteryx (United States)
        • 6.4.8.1. Business Overview
        • 6.4.8.2. Products/Services Offerings
        • 6.4.8.3. Financial Analysis
        • 6.4.8.4. SWOT Analysis
      • 6.4.9. TIBCO (United States)
        • 6.4.9.1. Business Overview
        • 6.4.9.2. Products/Services Offerings
        • 6.4.9.3. Financial Analysis
        • 6.4.9.4. SWOT Analysis
      • 6.4.10. Paxata (United States)
        • 6.4.10.1. Business Overview
        • 6.4.10.2. Products/Services Offerings
        • 6.4.10.3. Financial Analysis
        • 6.4.10.4. SWOT Analysis
      • 6.4.11. Impetus (United States)
        • 6.4.11.1. Business Overview
        • 6.4.11.2. Products/Services Offerings
        • 6.4.11.3. Financial Analysis
        • 6.4.11.4. SWOT Analysis
  • 7. Global Data Wrangling Sale, by Type, Application, Function Type, Organisation Size, Deployment Model and Region (value, volume and price ) (2023-2028)
    • 7.1. Introduction
    • 7.2. Global Data Wrangling (Value)
      • 7.2.1. Global Data Wrangling by: Type (Value)
        • 7.2.1.1. Tools (Tabula, CSVKit, and Others)
        • 7.2.1.2. Services [Managed Services and Professional Services (Consulting Services and Support and Maintenance Services)]
      • 7.2.2. Global Data Wrangling by: Application (Value)
        • 7.2.2.1. BFSI
        • 7.2.2.2. Telecom and IT
        • 7.2.2.3. Retail and eCommerce
        • 7.2.2.4. Healthcare and Life Sciences
        • 7.2.2.5. Travel and Hospitality
        • 7.2.2.6. Government
        • 7.2.2.7. Manufacturing
        • 7.2.2.8. Energy and Utilities
        • 7.2.2.9. Transportation and Logistics
        • 7.2.2.10. Others
      • 7.2.3. Global Data Wrangling by: Function Type (Value)
        • 7.2.3.1. Marketing and Sales
        • 7.2.3.2. Finance
        • 7.2.3.3. Operations
        • 7.2.3.4. HR
        • 7.2.3.5. Legal
        • 7.2.3.6. Others
      • 7.2.4. Global Data Wrangling by: Organisation Size (Value)
        • 7.2.4.1. Large enterprises
        • 7.2.4.2. Small and Medium-sized Enterprises (SMEs)
      • 7.2.5. Global Data Wrangling by: Deployment Model (Value)
        • 7.2.5.1. On-premises
        • 7.2.5.2. Cloud
      • 7.2.6. Global Data Wrangling Region
        • 7.2.6.1. South America
          • 7.2.6.1.1. Brazil
          • 7.2.6.1.2. Argentina
          • 7.2.6.1.3. Rest of South America
        • 7.2.6.2. Asia Pacific
          • 7.2.6.2.1. China
          • 7.2.6.2.2. Japan
          • 7.2.6.2.3. India
          • 7.2.6.2.4. South Korea
          • 7.2.6.2.5. Taiwan
          • 7.2.6.2.6. Australia
          • 7.2.6.2.7. Rest of Asia-Pacific
        • 7.2.6.3. Europe
          • 7.2.6.3.1. Germany
          • 7.2.6.3.2. France
          • 7.2.6.3.3. Italy
          • 7.2.6.3.4. United Kingdom
          • 7.2.6.3.5. Netherlands
          • 7.2.6.3.6. Rest of Europe
        • 7.2.6.4. MEA
          • 7.2.6.4.1. Middle East
          • 7.2.6.4.2. Africa
        • 7.2.6.5. North America
          • 7.2.6.5.1. United States
          • 7.2.6.5.2. Canada
          • 7.2.6.5.3. Mexico
    • 7.3. Global Data Wrangling (Volume)
      • 7.3.1. Global Data Wrangling by: Type (Volume)
        • 7.3.1.1. Tools (Tabula, CSVKit, and Others)
        • 7.3.1.2. Services [Managed Services and Professional Services (Consulting Services and Support and Maintenance Services)]
      • 7.3.2. Global Data Wrangling by: Application (Volume)
        • 7.3.2.1. BFSI
        • 7.3.2.2. Telecom and IT
        • 7.3.2.3. Retail and eCommerce
        • 7.3.2.4. Healthcare and Life Sciences
        • 7.3.2.5. Travel and Hospitality
        • 7.3.2.6. Government
        • 7.3.2.7. Manufacturing
        • 7.3.2.8. Energy and Utilities
        • 7.3.2.9. Transportation and Logistics
        • 7.3.2.10. Others
      • 7.3.3. Global Data Wrangling by: Function Type (Volume)
        • 7.3.3.1. Marketing and Sales
        • 7.3.3.2. Finance
        • 7.3.3.3. Operations
        • 7.3.3.4. HR
        • 7.3.3.5. Legal
        • 7.3.3.6. Others
      • 7.3.4. Global Data Wrangling by: Organisation Size (Volume)
        • 7.3.4.1. Large enterprises
        • 7.3.4.2. Small and Medium-sized Enterprises (SMEs)
      • 7.3.5. Global Data Wrangling by: Deployment Model (Volume)
        • 7.3.5.1. On-premises
        • 7.3.5.2. Cloud
      • 7.3.6. Global Data Wrangling Region
        • 7.3.6.1. South America
          • 7.3.6.1.1. Brazil
          • 7.3.6.1.2. Argentina
          • 7.3.6.1.3. Rest of South America
        • 7.3.6.2. Asia Pacific
          • 7.3.6.2.1. China
          • 7.3.6.2.2. Japan
          • 7.3.6.2.3. India
          • 7.3.6.2.4. South Korea
          • 7.3.6.2.5. Taiwan
          • 7.3.6.2.6. Australia
          • 7.3.6.2.7. Rest of Asia-Pacific
        • 7.3.6.3. Europe
          • 7.3.6.3.1. Germany
          • 7.3.6.3.2. France
          • 7.3.6.3.3. Italy
          • 7.3.6.3.4. United Kingdom
          • 7.3.6.3.5. Netherlands
          • 7.3.6.3.6. Rest of Europe
        • 7.3.6.4. MEA
          • 7.3.6.4.1. Middle East
          • 7.3.6.4.2. Africa
        • 7.3.6.5. North America
          • 7.3.6.5.1. United States
          • 7.3.6.5.2. Canada
          • 7.3.6.5.3. Mexico
    • 7.4. Global Data Wrangling (Price)
      • 7.4.1. Global Data Wrangling by: Type (Price)
  • 8. Appendix
    • 8.1. Acronyms
  • 9. Methodology and Data Source
    • 9.1. Methodology/Research Approach
      • 9.1.1. Research Programs/Design
      • 9.1.2. Market Size Estimation
      • 9.1.3. Market Breakdown and Data Triangulation
    • 9.2. Data Source
      • 9.2.1. Secondary Sources
      • 9.2.2. Primary Sources
    • 9.3. Disclaimer
List of Tables
  • Table 1. Data Wrangling: by Type(USD Million)
  • Table 2. Data Wrangling Tools (Tabula, CSVKit, and Others) , by Region USD Million (2017-2022)
  • Table 3. Data Wrangling Services [Managed Services and Professional Services (Consulting Services and Support and Maintenance Services)] , by Region USD Million (2017-2022)
  • Table 4. Data Wrangling: by Application(USD Million)
  • Table 5. Data Wrangling BFSI , by Region USD Million (2017-2022)
  • Table 6. Data Wrangling Telecom and IT , by Region USD Million (2017-2022)
  • Table 7. Data Wrangling Retail and eCommerce , by Region USD Million (2017-2022)
  • Table 8. Data Wrangling Healthcare and Life Sciences , by Region USD Million (2017-2022)
  • Table 9. Data Wrangling Travel and Hospitality , by Region USD Million (2017-2022)
  • Table 10. Data Wrangling Government , by Region USD Million (2017-2022)
  • Table 11. Data Wrangling Manufacturing , by Region USD Million (2017-2022)
  • Table 12. Data Wrangling Energy and Utilities , by Region USD Million (2017-2022)
  • Table 13. Data Wrangling Transportation and Logistics , by Region USD Million (2017-2022)
  • Table 14. Data Wrangling Others , by Region USD Million (2017-2022)
  • Table 15. Data Wrangling: by Function Type(USD Million)
  • Table 16. Data Wrangling Marketing and Sales , by Region USD Million (2017-2022)
  • Table 17. Data Wrangling Finance , by Region USD Million (2017-2022)
  • Table 18. Data Wrangling Operations , by Region USD Million (2017-2022)
  • Table 19. Data Wrangling HR , by Region USD Million (2017-2022)
  • Table 20. Data Wrangling Legal , by Region USD Million (2017-2022)
  • Table 21. Data Wrangling Others , by Region USD Million (2017-2022)
  • Table 22. Data Wrangling: by Organisation Size(USD Million)
  • Table 23. Data Wrangling Large enterprises , by Region USD Million (2017-2022)
  • Table 24. Data Wrangling Small and Medium-sized Enterprises (SMEs) , by Region USD Million (2017-2022)
  • Table 25. Data Wrangling: by Deployment Model(USD Million)
  • Table 26. Data Wrangling On-premises , by Region USD Million (2017-2022)
  • Table 27. Data Wrangling Cloud , by Region USD Million (2017-2022)
  • Table 28. South America Data Wrangling, by Country USD Million (2017-2022)
  • Table 29. South America Data Wrangling, by Type USD Million (2017-2022)
  • Table 30. South America Data Wrangling, by Application USD Million (2017-2022)
  • Table 31. South America Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 32. South America Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 33. South America Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 34. Brazil Data Wrangling, by Type USD Million (2017-2022)
  • Table 35. Brazil Data Wrangling, by Application USD Million (2017-2022)
  • Table 36. Brazil Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 37. Brazil Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 38. Brazil Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 39. Argentina Data Wrangling, by Type USD Million (2017-2022)
  • Table 40. Argentina Data Wrangling, by Application USD Million (2017-2022)
  • Table 41. Argentina Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 42. Argentina Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 43. Argentina Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 44. Rest of South America Data Wrangling, by Type USD Million (2017-2022)
  • Table 45. Rest of South America Data Wrangling, by Application USD Million (2017-2022)
  • Table 46. Rest of South America Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 47. Rest of South America Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 48. Rest of South America Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 49. Asia Pacific Data Wrangling, by Country USD Million (2017-2022)
  • Table 50. Asia Pacific Data Wrangling, by Type USD Million (2017-2022)
  • Table 51. Asia Pacific Data Wrangling, by Application USD Million (2017-2022)
  • Table 52. Asia Pacific Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 53. Asia Pacific Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 54. Asia Pacific Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 55. China Data Wrangling, by Type USD Million (2017-2022)
  • Table 56. China Data Wrangling, by Application USD Million (2017-2022)
  • Table 57. China Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 58. China Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 59. China Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 60. Japan Data Wrangling, by Type USD Million (2017-2022)
  • Table 61. Japan Data Wrangling, by Application USD Million (2017-2022)
  • Table 62. Japan Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 63. Japan Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 64. Japan Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 65. India Data Wrangling, by Type USD Million (2017-2022)
  • Table 66. India Data Wrangling, by Application USD Million (2017-2022)
  • Table 67. India Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 68. India Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 69. India Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 70. South Korea Data Wrangling, by Type USD Million (2017-2022)
  • Table 71. South Korea Data Wrangling, by Application USD Million (2017-2022)
  • Table 72. South Korea Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 73. South Korea Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 74. South Korea Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 75. Taiwan Data Wrangling, by Type USD Million (2017-2022)
  • Table 76. Taiwan Data Wrangling, by Application USD Million (2017-2022)
  • Table 77. Taiwan Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 78. Taiwan Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 79. Taiwan Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 80. Australia Data Wrangling, by Type USD Million (2017-2022)
  • Table 81. Australia Data Wrangling, by Application USD Million (2017-2022)
  • Table 82. Australia Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 83. Australia Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 84. Australia Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 85. Rest of Asia-Pacific Data Wrangling, by Type USD Million (2017-2022)
  • Table 86. Rest of Asia-Pacific Data Wrangling, by Application USD Million (2017-2022)
  • Table 87. Rest of Asia-Pacific Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 88. Rest of Asia-Pacific Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 89. Rest of Asia-Pacific Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 90. Europe Data Wrangling, by Country USD Million (2017-2022)
  • Table 91. Europe Data Wrangling, by Type USD Million (2017-2022)
  • Table 92. Europe Data Wrangling, by Application USD Million (2017-2022)
  • Table 93. Europe Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 94. Europe Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 95. Europe Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 96. Germany Data Wrangling, by Type USD Million (2017-2022)
  • Table 97. Germany Data Wrangling, by Application USD Million (2017-2022)
  • Table 98. Germany Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 99. Germany Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 100. Germany Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 101. France Data Wrangling, by Type USD Million (2017-2022)
  • Table 102. France Data Wrangling, by Application USD Million (2017-2022)
  • Table 103. France Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 104. France Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 105. France Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 106. Italy Data Wrangling, by Type USD Million (2017-2022)
  • Table 107. Italy Data Wrangling, by Application USD Million (2017-2022)
  • Table 108. Italy Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 109. Italy Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 110. Italy Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 111. United Kingdom Data Wrangling, by Type USD Million (2017-2022)
  • Table 112. United Kingdom Data Wrangling, by Application USD Million (2017-2022)
  • Table 113. United Kingdom Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 114. United Kingdom Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 115. United Kingdom Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 116. Netherlands Data Wrangling, by Type USD Million (2017-2022)
  • Table 117. Netherlands Data Wrangling, by Application USD Million (2017-2022)
  • Table 118. Netherlands Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 119. Netherlands Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 120. Netherlands Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 121. Rest of Europe Data Wrangling, by Type USD Million (2017-2022)
  • Table 122. Rest of Europe Data Wrangling, by Application USD Million (2017-2022)
  • Table 123. Rest of Europe Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 124. Rest of Europe Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 125. Rest of Europe Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 126. MEA Data Wrangling, by Country USD Million (2017-2022)
  • Table 127. MEA Data Wrangling, by Type USD Million (2017-2022)
  • Table 128. MEA Data Wrangling, by Application USD Million (2017-2022)
  • Table 129. MEA Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 130. MEA Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 131. MEA Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 132. Middle East Data Wrangling, by Type USD Million (2017-2022)
  • Table 133. Middle East Data Wrangling, by Application USD Million (2017-2022)
  • Table 134. Middle East Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 135. Middle East Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 136. Middle East Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 137. Africa Data Wrangling, by Type USD Million (2017-2022)
  • Table 138. Africa Data Wrangling, by Application USD Million (2017-2022)
  • Table 139. Africa Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 140. Africa Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 141. Africa Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 142. North America Data Wrangling, by Country USD Million (2017-2022)
  • Table 143. North America Data Wrangling, by Type USD Million (2017-2022)
  • Table 144. North America Data Wrangling, by Application USD Million (2017-2022)
  • Table 145. North America Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 146. North America Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 147. North America Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 148. United States Data Wrangling, by Type USD Million (2017-2022)
  • Table 149. United States Data Wrangling, by Application USD Million (2017-2022)
  • Table 150. United States Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 151. United States Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 152. United States Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 153. Canada Data Wrangling, by Type USD Million (2017-2022)
  • Table 154. Canada Data Wrangling, by Application USD Million (2017-2022)
  • Table 155. Canada Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 156. Canada Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 157. Canada Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 158. Mexico Data Wrangling, by Type USD Million (2017-2022)
  • Table 159. Mexico Data Wrangling, by Application USD Million (2017-2022)
  • Table 160. Mexico Data Wrangling, by Function Type USD Million (2017-2022)
  • Table 161. Mexico Data Wrangling, by Organisation Size USD Million (2017-2022)
  • Table 162. Mexico Data Wrangling, by Deployment Model USD Million (2017-2022)
  • Table 163. Data Wrangling Sales: by Type(Unit)
  • Table 164. Data Wrangling Sales Tools (Tabula, CSVKit, and Others) , by Region Unit (2017-2022)
  • Table 165. Data Wrangling Sales Services [Managed Services and Professional Services (Consulting Services and Support and Maintenance Services)] , by Region Unit (2017-2022)
  • Table 166. Data Wrangling Sales: by Application(Unit)
  • Table 167. Data Wrangling Sales BFSI , by Region Unit (2017-2022)
  • Table 168. Data Wrangling Sales Telecom and IT , by Region Unit (2017-2022)
  • Table 169. Data Wrangling Sales Retail and eCommerce , by Region Unit (2017-2022)
  • Table 170. Data Wrangling Sales Healthcare and Life Sciences , by Region Unit (2017-2022)
  • Table 171. Data Wrangling Sales Travel and Hospitality , by Region Unit (2017-2022)
  • Table 172. Data Wrangling Sales Government , by Region Unit (2017-2022)
  • Table 173. Data Wrangling Sales Manufacturing , by Region Unit (2017-2022)
  • Table 174. Data Wrangling Sales Energy and Utilities , by Region Unit (2017-2022)
  • Table 175. Data Wrangling Sales Transportation and Logistics , by Region Unit (2017-2022)
  • Table 176. Data Wrangling Sales Others , by Region Unit (2017-2022)
  • Table 177. Data Wrangling Sales: by Function Type(Unit)
  • Table 178. Data Wrangling Sales Marketing and Sales , by Region Unit (2017-2022)
  • Table 179. Data Wrangling Sales Finance , by Region Unit (2017-2022)
  • Table 180. Data Wrangling Sales Operations , by Region Unit (2017-2022)
  • Table 181. Data Wrangling Sales HR , by Region Unit (2017-2022)
  • Table 182. Data Wrangling Sales Legal , by Region Unit (2017-2022)
  • Table 183. Data Wrangling Sales Others , by Region Unit (2017-2022)
  • Table 184. Data Wrangling Sales: by Organisation Size(Unit)
  • Table 185. Data Wrangling Sales Large enterprises , by Region Unit (2017-2022)
  • Table 186. Data Wrangling Sales Small and Medium-sized Enterprises (SMEs) , by Region Unit (2017-2022)
  • Table 187. Data Wrangling Sales: by Deployment Model(Unit)
  • Table 188. Data Wrangling Sales On-premises , by Region Unit (2017-2022)
  • Table 189. Data Wrangling Sales Cloud , by Region Unit (2017-2022)
  • Table 190. South America Data Wrangling Sales, by Country Unit (2017-2022)
  • Table 191. South America Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 192. South America Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 193. South America Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 194. South America Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 195. South America Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 196. Brazil Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 197. Brazil Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 198. Brazil Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 199. Brazil Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 200. Brazil Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 201. Argentina Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 202. Argentina Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 203. Argentina Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 204. Argentina Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 205. Argentina Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 206. Rest of South America Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 207. Rest of South America Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 208. Rest of South America Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 209. Rest of South America Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 210. Rest of South America Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 211. Asia Pacific Data Wrangling Sales, by Country Unit (2017-2022)
  • Table 212. Asia Pacific Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 213. Asia Pacific Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 214. Asia Pacific Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 215. Asia Pacific Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 216. Asia Pacific Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 217. China Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 218. China Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 219. China Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 220. China Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 221. China Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 222. Japan Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 223. Japan Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 224. Japan Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 225. Japan Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 226. Japan Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 227. India Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 228. India Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 229. India Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 230. India Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 231. India Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 232. South Korea Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 233. South Korea Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 234. South Korea Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 235. South Korea Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 236. South Korea Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 237. Taiwan Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 238. Taiwan Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 239. Taiwan Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 240. Taiwan Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 241. Taiwan Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 242. Australia Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 243. Australia Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 244. Australia Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 245. Australia Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 246. Australia Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 247. Rest of Asia-Pacific Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 248. Rest of Asia-Pacific Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 249. Rest of Asia-Pacific Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 250. Rest of Asia-Pacific Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 251. Rest of Asia-Pacific Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 252. Europe Data Wrangling Sales, by Country Unit (2017-2022)
  • Table 253. Europe Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 254. Europe Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 255. Europe Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 256. Europe Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 257. Europe Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 258. Germany Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 259. Germany Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 260. Germany Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 261. Germany Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 262. Germany Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 263. France Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 264. France Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 265. France Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 266. France Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 267. France Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 268. Italy Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 269. Italy Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 270. Italy Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 271. Italy Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 272. Italy Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 273. United Kingdom Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 274. United Kingdom Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 275. United Kingdom Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 276. United Kingdom Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 277. United Kingdom Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 278. Netherlands Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 279. Netherlands Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 280. Netherlands Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 281. Netherlands Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 282. Netherlands Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 283. Rest of Europe Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 284. Rest of Europe Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 285. Rest of Europe Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 286. Rest of Europe Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 287. Rest of Europe Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 288. MEA Data Wrangling Sales, by Country Unit (2017-2022)
  • Table 289. MEA Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 290. MEA Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 291. MEA Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 292. MEA Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 293. MEA Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 294. Middle East Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 295. Middle East Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 296. Middle East Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 297. Middle East Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 298. Middle East Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 299. Africa Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 300. Africa Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 301. Africa Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 302. Africa Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 303. Africa Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 304. North America Data Wrangling Sales, by Country Unit (2017-2022)
  • Table 305. North America Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 306. North America Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 307. North America Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 308. North America Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 309. North America Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 310. United States Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 311. United States Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 312. United States Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 313. United States Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 314. United States Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 315. Canada Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 316. Canada Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 317. Canada Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 318. Canada Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 319. Canada Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 320. Mexico Data Wrangling Sales, by Type Unit (2017-2022)
  • Table 321. Mexico Data Wrangling Sales, by Application Unit (2017-2022)
  • Table 322. Mexico Data Wrangling Sales, by Function Type Unit (2017-2022)
  • Table 323. Mexico Data Wrangling Sales, by Organisation Size Unit (2017-2022)
  • Table 324. Mexico Data Wrangling Sales, by Deployment Model Unit (2017-2022)
  • Table 325. Data Wrangling: by Type(USD/Units)
  • Table 326. Company Basic Information, Sales Area and Its Competitors
  • Table 327. Company Basic Information, Sales Area and Its Competitors
  • Table 328. Company Basic Information, Sales Area and Its Competitors
  • Table 329. Company Basic Information, Sales Area and Its Competitors
  • Table 330. Company Basic Information, Sales Area and Its Competitors
  • Table 331. Company Basic Information, Sales Area and Its Competitors
  • Table 332. Company Basic Information, Sales Area and Its Competitors
  • Table 333. Company Basic Information, Sales Area and Its Competitors
  • Table 334. Company Basic Information, Sales Area and Its Competitors
  • Table 335. Company Basic Information, Sales Area and Its Competitors
  • Table 336. Company Basic Information, Sales Area and Its Competitors
  • Table 337. Data Wrangling: by Type(USD Million)
  • Table 338. Data Wrangling Tools (Tabula, CSVKit, and Others) , by Region USD Million (2023-2028)
  • Table 339. Data Wrangling Services [Managed Services and Professional Services (Consulting Services and Support and Maintenance Services)] , by Region USD Million (2023-2028)
  • Table 340. Data Wrangling: by Application(USD Million)
  • Table 341. Data Wrangling BFSI , by Region USD Million (2023-2028)
  • Table 342. Data Wrangling Telecom and IT , by Region USD Million (2023-2028)
  • Table 343. Data Wrangling Retail and eCommerce , by Region USD Million (2023-2028)
  • Table 344. Data Wrangling Healthcare and Life Sciences , by Region USD Million (2023-2028)
  • Table 345. Data Wrangling Travel and Hospitality , by Region USD Million (2023-2028)
  • Table 346. Data Wrangling Government , by Region USD Million (2023-2028)
  • Table 347. Data Wrangling Manufacturing , by Region USD Million (2023-2028)
  • Table 348. Data Wrangling Energy and Utilities , by Region USD Million (2023-2028)
  • Table 349. Data Wrangling Transportation and Logistics , by Region USD Million (2023-2028)
  • Table 350. Data Wrangling Others , by Region USD Million (2023-2028)
  • Table 351. Data Wrangling: by Function Type(USD Million)
  • Table 352. Data Wrangling Marketing and Sales , by Region USD Million (2023-2028)
  • Table 353. Data Wrangling Finance , by Region USD Million (2023-2028)
  • Table 354. Data Wrangling Operations , by Region USD Million (2023-2028)
  • Table 355. Data Wrangling HR , by Region USD Million (2023-2028)
  • Table 356. Data Wrangling Legal , by Region USD Million (2023-2028)
  • Table 357. Data Wrangling Others , by Region USD Million (2023-2028)
  • Table 358. Data Wrangling: by Organisation Size(USD Million)
  • Table 359. Data Wrangling Large enterprises , by Region USD Million (2023-2028)
  • Table 360. Data Wrangling Small and Medium-sized Enterprises (SMEs) , by Region USD Million (2023-2028)
  • Table 361. Data Wrangling: by Deployment Model(USD Million)
  • Table 362. Data Wrangling On-premises , by Region USD Million (2023-2028)
  • Table 363. Data Wrangling Cloud , by Region USD Million (2023-2028)
  • Table 364. South America Data Wrangling, by Country USD Million (2023-2028)
  • Table 365. South America Data Wrangling, by Type USD Million (2023-2028)
  • Table 366. South America Data Wrangling, by Application USD Million (2023-2028)
  • Table 367. South America Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 368. South America Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 369. South America Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 370. Brazil Data Wrangling, by Type USD Million (2023-2028)
  • Table 371. Brazil Data Wrangling, by Application USD Million (2023-2028)
  • Table 372. Brazil Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 373. Brazil Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 374. Brazil Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 375. Argentina Data Wrangling, by Type USD Million (2023-2028)
  • Table 376. Argentina Data Wrangling, by Application USD Million (2023-2028)
  • Table 377. Argentina Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 378. Argentina Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 379. Argentina Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 380. Rest of South America Data Wrangling, by Type USD Million (2023-2028)
  • Table 381. Rest of South America Data Wrangling, by Application USD Million (2023-2028)
  • Table 382. Rest of South America Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 383. Rest of South America Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 384. Rest of South America Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 385. Asia Pacific Data Wrangling, by Country USD Million (2023-2028)
  • Table 386. Asia Pacific Data Wrangling, by Type USD Million (2023-2028)
  • Table 387. Asia Pacific Data Wrangling, by Application USD Million (2023-2028)
  • Table 388. Asia Pacific Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 389. Asia Pacific Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 390. Asia Pacific Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 391. China Data Wrangling, by Type USD Million (2023-2028)
  • Table 392. China Data Wrangling, by Application USD Million (2023-2028)
  • Table 393. China Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 394. China Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 395. China Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 396. Japan Data Wrangling, by Type USD Million (2023-2028)
  • Table 397. Japan Data Wrangling, by Application USD Million (2023-2028)
  • Table 398. Japan Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 399. Japan Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 400. Japan Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 401. India Data Wrangling, by Type USD Million (2023-2028)
  • Table 402. India Data Wrangling, by Application USD Million (2023-2028)
  • Table 403. India Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 404. India Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 405. India Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 406. South Korea Data Wrangling, by Type USD Million (2023-2028)
  • Table 407. South Korea Data Wrangling, by Application USD Million (2023-2028)
  • Table 408. South Korea Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 409. South Korea Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 410. South Korea Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 411. Taiwan Data Wrangling, by Type USD Million (2023-2028)
  • Table 412. Taiwan Data Wrangling, by Application USD Million (2023-2028)
  • Table 413. Taiwan Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 414. Taiwan Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 415. Taiwan Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 416. Australia Data Wrangling, by Type USD Million (2023-2028)
  • Table 417. Australia Data Wrangling, by Application USD Million (2023-2028)
  • Table 418. Australia Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 419. Australia Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 420. Australia Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 421. Rest of Asia-Pacific Data Wrangling, by Type USD Million (2023-2028)
  • Table 422. Rest of Asia-Pacific Data Wrangling, by Application USD Million (2023-2028)
  • Table 423. Rest of Asia-Pacific Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 424. Rest of Asia-Pacific Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 425. Rest of Asia-Pacific Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 426. Europe Data Wrangling, by Country USD Million (2023-2028)
  • Table 427. Europe Data Wrangling, by Type USD Million (2023-2028)
  • Table 428. Europe Data Wrangling, by Application USD Million (2023-2028)
  • Table 429. Europe Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 430. Europe Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 431. Europe Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 432. Germany Data Wrangling, by Type USD Million (2023-2028)
  • Table 433. Germany Data Wrangling, by Application USD Million (2023-2028)
  • Table 434. Germany Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 435. Germany Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 436. Germany Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 437. France Data Wrangling, by Type USD Million (2023-2028)
  • Table 438. France Data Wrangling, by Application USD Million (2023-2028)
  • Table 439. France Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 440. France Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 441. France Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 442. Italy Data Wrangling, by Type USD Million (2023-2028)
  • Table 443. Italy Data Wrangling, by Application USD Million (2023-2028)
  • Table 444. Italy Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 445. Italy Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 446. Italy Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 447. United Kingdom Data Wrangling, by Type USD Million (2023-2028)
  • Table 448. United Kingdom Data Wrangling, by Application USD Million (2023-2028)
  • Table 449. United Kingdom Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 450. United Kingdom Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 451. United Kingdom Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 452. Netherlands Data Wrangling, by Type USD Million (2023-2028)
  • Table 453. Netherlands Data Wrangling, by Application USD Million (2023-2028)
  • Table 454. Netherlands Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 455. Netherlands Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 456. Netherlands Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 457. Rest of Europe Data Wrangling, by Type USD Million (2023-2028)
  • Table 458. Rest of Europe Data Wrangling, by Application USD Million (2023-2028)
  • Table 459. Rest of Europe Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 460. Rest of Europe Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 461. Rest of Europe Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 462. MEA Data Wrangling, by Country USD Million (2023-2028)
  • Table 463. MEA Data Wrangling, by Type USD Million (2023-2028)
  • Table 464. MEA Data Wrangling, by Application USD Million (2023-2028)
  • Table 465. MEA Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 466. MEA Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 467. MEA Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 468. Middle East Data Wrangling, by Type USD Million (2023-2028)
  • Table 469. Middle East Data Wrangling, by Application USD Million (2023-2028)
  • Table 470. Middle East Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 471. Middle East Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 472. Middle East Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 473. Africa Data Wrangling, by Type USD Million (2023-2028)
  • Table 474. Africa Data Wrangling, by Application USD Million (2023-2028)
  • Table 475. Africa Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 476. Africa Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 477. Africa Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 478. North America Data Wrangling, by Country USD Million (2023-2028)
  • Table 479. North America Data Wrangling, by Type USD Million (2023-2028)
  • Table 480. North America Data Wrangling, by Application USD Million (2023-2028)
  • Table 481. North America Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 482. North America Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 483. North America Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 484. United States Data Wrangling, by Type USD Million (2023-2028)
  • Table 485. United States Data Wrangling, by Application USD Million (2023-2028)
  • Table 486. United States Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 487. United States Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 488. United States Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 489. Canada Data Wrangling, by Type USD Million (2023-2028)
  • Table 490. Canada Data Wrangling, by Application USD Million (2023-2028)
  • Table 491. Canada Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 492. Canada Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 493. Canada Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 494. Mexico Data Wrangling, by Type USD Million (2023-2028)
  • Table 495. Mexico Data Wrangling, by Application USD Million (2023-2028)
  • Table 496. Mexico Data Wrangling, by Function Type USD Million (2023-2028)
  • Table 497. Mexico Data Wrangling, by Organisation Size USD Million (2023-2028)
  • Table 498. Mexico Data Wrangling, by Deployment Model USD Million (2023-2028)
  • Table 499. Data Wrangling Sales: by Type(Unit)
  • Table 500. Data Wrangling Sales Tools (Tabula, CSVKit, and Others) , by Region Unit (2023-2028)
  • Table 501. Data Wrangling Sales Services [Managed Services and Professional Services (Consulting Services and Support and Maintenance Services)] , by Region Unit (2023-2028)
  • Table 502. Data Wrangling Sales: by Application(Unit)
  • Table 503. Data Wrangling Sales BFSI , by Region Unit (2023-2028)
  • Table 504. Data Wrangling Sales Telecom and IT , by Region Unit (2023-2028)
  • Table 505. Data Wrangling Sales Retail and eCommerce , by Region Unit (2023-2028)
  • Table 506. Data Wrangling Sales Healthcare and Life Sciences , by Region Unit (2023-2028)
  • Table 507. Data Wrangling Sales Travel and Hospitality , by Region Unit (2023-2028)
  • Table 508. Data Wrangling Sales Government , by Region Unit (2023-2028)
  • Table 509. Data Wrangling Sales Manufacturing , by Region Unit (2023-2028)
  • Table 510. Data Wrangling Sales Energy and Utilities , by Region Unit (2023-2028)
  • Table 511. Data Wrangling Sales Transportation and Logistics , by Region Unit (2023-2028)
  • Table 512. Data Wrangling Sales Others , by Region Unit (2023-2028)
  • Table 513. Data Wrangling Sales: by Function Type(Unit)
  • Table 514. Data Wrangling Sales Marketing and Sales , by Region Unit (2023-2028)
  • Table 515. Data Wrangling Sales Finance , by Region Unit (2023-2028)
  • Table 516. Data Wrangling Sales Operations , by Region Unit (2023-2028)
  • Table 517. Data Wrangling Sales HR , by Region Unit (2023-2028)
  • Table 518. Data Wrangling Sales Legal , by Region Unit (2023-2028)
  • Table 519. Data Wrangling Sales Others , by Region Unit (2023-2028)
  • Table 520. Data Wrangling Sales: by Organisation Size(Unit)
  • Table 521. Data Wrangling Sales Large enterprises , by Region Unit (2023-2028)
  • Table 522. Data Wrangling Sales Small and Medium-sized Enterprises (SMEs) , by Region Unit (2023-2028)
  • Table 523. Data Wrangling Sales: by Deployment Model(Unit)
  • Table 524. Data Wrangling Sales On-premises , by Region Unit (2023-2028)
  • Table 525. Data Wrangling Sales Cloud , by Region Unit (2023-2028)
  • Table 526. South America Data Wrangling Sales, by Country Unit (2023-2028)
  • Table 527. South America Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 528. South America Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 529. South America Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 530. South America Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 531. South America Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 532. Brazil Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 533. Brazil Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 534. Brazil Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 535. Brazil Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 536. Brazil Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 537. Argentina Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 538. Argentina Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 539. Argentina Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 540. Argentina Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 541. Argentina Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 542. Rest of South America Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 543. Rest of South America Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 544. Rest of South America Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 545. Rest of South America Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 546. Rest of South America Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 547. Asia Pacific Data Wrangling Sales, by Country Unit (2023-2028)
  • Table 548. Asia Pacific Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 549. Asia Pacific Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 550. Asia Pacific Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 551. Asia Pacific Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 552. Asia Pacific Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 553. China Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 554. China Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 555. China Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 556. China Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 557. China Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 558. Japan Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 559. Japan Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 560. Japan Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 561. Japan Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 562. Japan Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 563. India Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 564. India Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 565. India Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 566. India Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 567. India Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 568. South Korea Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 569. South Korea Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 570. South Korea Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 571. South Korea Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 572. South Korea Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 573. Taiwan Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 574. Taiwan Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 575. Taiwan Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 576. Taiwan Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 577. Taiwan Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 578. Australia Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 579. Australia Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 580. Australia Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 581. Australia Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 582. Australia Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 583. Rest of Asia-Pacific Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 584. Rest of Asia-Pacific Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 585. Rest of Asia-Pacific Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 586. Rest of Asia-Pacific Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 587. Rest of Asia-Pacific Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 588. Europe Data Wrangling Sales, by Country Unit (2023-2028)
  • Table 589. Europe Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 590. Europe Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 591. Europe Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 592. Europe Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 593. Europe Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 594. Germany Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 595. Germany Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 596. Germany Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 597. Germany Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 598. Germany Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 599. France Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 600. France Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 601. France Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 602. France Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 603. France Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 604. Italy Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 605. Italy Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 606. Italy Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 607. Italy Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 608. Italy Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 609. United Kingdom Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 610. United Kingdom Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 611. United Kingdom Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 612. United Kingdom Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 613. United Kingdom Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 614. Netherlands Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 615. Netherlands Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 616. Netherlands Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 617. Netherlands Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 618. Netherlands Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 619. Rest of Europe Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 620. Rest of Europe Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 621. Rest of Europe Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 622. Rest of Europe Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 623. Rest of Europe Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 624. MEA Data Wrangling Sales, by Country Unit (2023-2028)
  • Table 625. MEA Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 626. MEA Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 627. MEA Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 628. MEA Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 629. MEA Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 630. Middle East Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 631. Middle East Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 632. Middle East Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 633. Middle East Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 634. Middle East Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 635. Africa Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 636. Africa Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 637. Africa Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 638. Africa Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 639. Africa Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 640. North America Data Wrangling Sales, by Country Unit (2023-2028)
  • Table 641. North America Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 642. North America Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 643. North America Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 644. North America Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 645. North America Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 646. United States Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 647. United States Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 648. United States Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 649. United States Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 650. United States Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 651. Canada Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 652. Canada Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 653. Canada Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 654. Canada Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 655. Canada Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 656. Mexico Data Wrangling Sales, by Type Unit (2023-2028)
  • Table 657. Mexico Data Wrangling Sales, by Application Unit (2023-2028)
  • Table 658. Mexico Data Wrangling Sales, by Function Type Unit (2023-2028)
  • Table 659. Mexico Data Wrangling Sales, by Organisation Size Unit (2023-2028)
  • Table 660. Mexico Data Wrangling Sales, by Deployment Model Unit (2023-2028)
  • Table 661. Data Wrangling: by Type(USD/Units)
  • Table 662. Research Programs/Design for This Report
  • Table 663. Key Data Information from Secondary Sources
  • Table 664. Key Data Information from Primary Sources
List of Figures
  • Figure 1. Porters Five Forces
  • Figure 2. Supply/Value Chain
  • Figure 3. PESTEL analysis
  • Figure 4. Global Data Wrangling: by Type USD Million (2017-2022)
  • Figure 5. Global Data Wrangling: by Application USD Million (2017-2022)
  • Figure 6. Global Data Wrangling: by Function Type USD Million (2017-2022)
  • Figure 7. Global Data Wrangling: by Organisation Size USD Million (2017-2022)
  • Figure 8. Global Data Wrangling: by Deployment Model USD Million (2017-2022)
  • Figure 9. South America Data Wrangling Share (%), by Country
  • Figure 10. Asia Pacific Data Wrangling Share (%), by Country
  • Figure 11. Europe Data Wrangling Share (%), by Country
  • Figure 12. MEA Data Wrangling Share (%), by Country
  • Figure 13. North America Data Wrangling Share (%), by Country
  • Figure 14. Global Data Wrangling: by Type Unit (2017-2022)
  • Figure 15. Global Data Wrangling: by Application Unit (2017-2022)
  • Figure 16. Global Data Wrangling: by Function Type Unit (2017-2022)
  • Figure 17. Global Data Wrangling: by Organisation Size Unit (2017-2022)
  • Figure 18. Global Data Wrangling: by Deployment Model Unit (2017-2022)
  • Figure 19. South America Data Wrangling Share (%), by Country
  • Figure 20. Asia Pacific Data Wrangling Share (%), by Country
  • Figure 21. Europe Data Wrangling Share (%), by Country
  • Figure 22. MEA Data Wrangling Share (%), by Country
  • Figure 23. North America Data Wrangling Share (%), by Country
  • Figure 24. Global Data Wrangling: by Type USD/Units (2017-2022)
  • Figure 25. Global Data Wrangling share by Players 2022 (%)
  • Figure 26. Global Data Wrangling share by Players (Top 3) 2022(%)
  • Figure 27. Global Data Wrangling share by Players (Top 5) 2022(%)
  • Figure 28. BCG Matrix for key Companies
  • Figure 29. Trifacta (United States) Revenue, Net Income and Gross profit
  • Figure 30. Trifacta (United States) Revenue: by Geography 2022
  • Figure 31. Datawatch (United States) Revenue, Net Income and Gross profit
  • Figure 32. Datawatch (United States) Revenue: by Geography 2022
  • Figure 33. Dataiku (France) Revenue, Net Income and Gross profit
  • Figure 34. Dataiku (France) Revenue: by Geography 2022
  • Figure 35. IBM (United States) Revenue, Net Income and Gross profit
  • Figure 36. IBM (United States) Revenue: by Geography 2022
  • Figure 37. SAS Institute (United States) Revenue, Net Income and Gross profit
  • Figure 38. SAS Institute (United States) Revenue: by Geography 2022
  • Figure 39. Oracle (United States) Revenue, Net Income and Gross profit
  • Figure 40. Oracle (United States) Revenue: by Geography 2022
  • Figure 41. Talend (United States) Revenue, Net Income and Gross profit
  • Figure 42. Talend (United States) Revenue: by Geography 2022
  • Figure 43. Alteryx (United States) Revenue, Net Income and Gross profit
  • Figure 44. Alteryx (United States) Revenue: by Geography 2022
  • Figure 45. TIBCO (United States) Revenue, Net Income and Gross profit
  • Figure 46. TIBCO (United States) Revenue: by Geography 2022
  • Figure 47. Paxata (United States) Revenue, Net Income and Gross profit
  • Figure 48. Paxata (United States) Revenue: by Geography 2022
  • Figure 49. Impetus (United States) Revenue, Net Income and Gross profit
  • Figure 50. Impetus (United States) Revenue: by Geography 2022
  • Figure 51. Global Data Wrangling: by Type USD Million (2023-2028)
  • Figure 52. Global Data Wrangling: by Application USD Million (2023-2028)
  • Figure 53. Global Data Wrangling: by Function Type USD Million (2023-2028)
  • Figure 54. Global Data Wrangling: by Organisation Size USD Million (2023-2028)
  • Figure 55. Global Data Wrangling: by Deployment Model USD Million (2023-2028)
  • Figure 56. South America Data Wrangling Share (%), by Country
  • Figure 57. Asia Pacific Data Wrangling Share (%), by Country
  • Figure 58. Europe Data Wrangling Share (%), by Country
  • Figure 59. MEA Data Wrangling Share (%), by Country
  • Figure 60. North America Data Wrangling Share (%), by Country
  • Figure 61. Global Data Wrangling: by Type Unit (2023-2028)
  • Figure 62. Global Data Wrangling: by Application Unit (2023-2028)
  • Figure 63. Global Data Wrangling: by Function Type Unit (2023-2028)
  • Figure 64. Global Data Wrangling: by Organisation Size Unit (2023-2028)
  • Figure 65. Global Data Wrangling: by Deployment Model Unit (2023-2028)
  • Figure 66. South America Data Wrangling Share (%), by Country
  • Figure 67. Asia Pacific Data Wrangling Share (%), by Country
  • Figure 68. Europe Data Wrangling Share (%), by Country
  • Figure 69. MEA Data Wrangling Share (%), by Country
  • Figure 70. North America Data Wrangling Share (%), by Country
  • Figure 71. Global Data Wrangling: by Type USD/Units (2023-2028)
List of companies from research coverage that are profiled in the study
  • Trifacta (United States)
  • Datawatch (United States)
  • Dataiku (France)
  • IBM (United States)
  • SAS Institute (United States)
  • Oracle (United States)
  • Talend (United States)
  • Alteryx (United States)
  • TIBCO (United States)
  • Paxata (United States)
  • Impetus (United States)
Additional players considered in the study are as follows:
Informatica (United States) , Hitachi Vantara (United States) , Teradata (United States)
Select User Access Type

Key Highlights of Report


Dec 2023 208 Pages 96 Tables Base Year: 2022 Coverage: 15+ Companies; 18 Countries

Request Sample Pages

Budget constraints? Get in touch with us for special pricing


Check Discount Now

Talk to Our Experts

Want to Customize Study?


"We employ Market statistics, Industry benchmarking, Patent analysis, and Technological Insights to derive requirements and provide customize scope of work."

Make an Enquiry Now

Frequently Asked Questions (FAQ):

Top performing companies in the Global Data Wrangling market are Trifacta (United States), Datawatch (United States), Dataiku (France), IBM (United States), SAS Institute (United States), Oracle (United States), Talend (United States), Alteryx (United States), TIBCO (United States), Paxata (United States) and Impetus (United States), to name a few.
"Adoption of AI and Ml Technologies" is seen as one of major influencing trends for Data Wrangling Market during projected period 2022-2028.
Tools (Tabula, CSVKit, and Others) segment in Global market to hold robust market share owing to "Increasing Volume and Velocity of Data ".

Know More About Global Data Wrangling Report?